
Master assignment BaseCamp
Period: 13-17 January 2025

Fishing: A step into the world of fishing!

Source Image: generated with MS Copilot

2

Table of Contents
Fishing: A step into the world of fishing! ... 1

Introduction ... 3

Database .. 4

Schema database ... 4

Classes .. 6

JSON example .. 11

Functionality .. 12

Testing .. 14

Technical requirements ... 14

Filenames to submit in CodeGrade: .. 14

Plagiarism ... 15

Submissions in CodeGrade .. 15

Deadlines ... 15

Deliverables (summary) ... 15

3

Introduction

In recent weeks you have been preparing for a success in Basecamp. In the master assignment,

we're going to take a small event to showcase the skills you've acquired over the past weeks.

Using the techniques you have learned in Python, you will complete an assignment based on

the theme of fishing. The assignment involves analyzing catches of various types of fish by

contestants from around the world.

The application you develop will extract information from files, store it in other sources,

generate reports, and perform calculations to answer the questions we present.

Beyond that, you are free to further expand the application to your own satisfaction in order to

do justice to all the knowledge you have acquired. Finally, the master assignment is like the

challenge. A showcase for your knowledge and work!

You can expand the application as far as you want, as long as the mandatory parts (which are

listed later in this document) remain available. This way you can give it a Command Line

Interface or maybe even a Graphical User Interface if you want! Make sure that you first

perform the parts specified by us before you start working on extensions.

Topics that will be covered:

• Basic Python (datatypes, functions, loops, if/else, collections)

• Classes

• SQL

• JSON

• CSV

• Unit tests

4

Database
We have already made an empty sqlite3 database for you (catches.db) and a JSON-file

(catches.json) with information about Catches, Fishes and Contestants. With empty we mean

that the tables are already created and only must be filled with the data from the JSON file.

The database should only be populated if it is empty, and this check should be performed when

the application starts. When populating the database, make sure to use one transaction (one

commit). Otherwise, your script will take too long to run on CodeGrade and you will not be able

to see if the other tests pass.

Tip: Make a copy of the empty database before populating it. This way, if something goes

wrong, you can easily restore the empty database and start fresh.

Schema database

5

The database consists of 3 tables

Table Fishes has the following fields:

taxon_key (integer), species (string), scientific_name (string), kingdom (string)

Table Catches has the following fields:

id (integer), fish_id (integer), contestant_id (string), caught_at (datetime), latitude (float),

longitude (float), country_code (string), weight (float), length (float)

Weight is in grams, length is in centimeters.

Table Contestants has the following fields:

id (string), first_name (string), last_name (string), classification (string), date_of_birth

(datetime)

6

Classes

You have to make three classes in three separate files (catch.py, contestant.py, fish.py):

• Every class should have an __init__() method with the attribute fields as parameters, so

they can be passed when initializing the class

• Every class should have a __repr__() method for repr/printing (@dataclass style). This

method is already given (see template) and should not be changed.

Class Catch:

• Attributes:
id (int) fish (int), contestant (str), caught_at (datetime), latitude (float), longitude (float),
country_code (str), weight (float), length (float)

Weight is in grams, length is in centimeters.

•

• Mandatory Methods:

o get_contestant() -> Contestant

Returns the contestant who caught the fish in this catch.

o get_fish() -> Fish

Returns the fish caught in this catch.

o get_weight_in_local_units() -> str

Returns a string that displays the mass of the catch in the local unit of mass

based on the country code. Use the table below to determine the appropriate

unit and conversion formula for the country

Use like: “{value_unit_a} {name_unit_a}, {value_unit_b} {name_unit_b}”

example”1000.00 Gram, 1.00 Kilogram”

C Code Country Common Units of Mass Conversion Formula from Grams

US United States Pound (lb), Ounce (oz) Pounds: Grams ÷ 453.592

Ounces: Grams ÷ 28.3495

LR Liberia Pound (lb), Ounce (oz) Pounds: Grams ÷ 453.592

Ounces: Grams ÷ 28.3495

MM Myanmar Viss (v), Pound (lb) Viss: Grams ÷ 1600

Pounds: Grams ÷ 453.592

CA Canada Pound (lb), Ounce (oz) Pounds: Grams ÷ 453.592

Ounces: Grams ÷ 28.3495

GB United Kingdom Stone (st), Pound (lb) Stones: Grams ÷ 6350.29

Pounds: Grams ÷ 453.592

7

AU Australia Pound (lb), Ounce (oz) Pounds: Grams ÷ 453.592

Ounces: Grams ÷ 28.3495

BS Bahamas Pound (lb), Ounce (oz) Pounds: Grams ÷ 453.592

Ounces: Grams ÷ 28.3495

FJ Fiji Pound (lb), Ounce (oz) Pounds: Grams ÷ 453.592

Ounces: Grams ÷ 28.3495

JM Jamaica Pound (lb), Ounce (oz) Pounds: Grams ÷ 453.592

Ounces: Grams ÷ 28.3495

PG Papua New Guinea Pound (lb), Ounce (oz) Pounds: Grams ÷ 453.592

Ounces: Grams ÷ 28.3495

TO Tonga Pound (lb), Ounce (oz) Pounds: Grams ÷ 453.592

Ounces: Grams ÷ 28.3495

IN India Pound (lb), Kilogram

(kg)

Pounds: Grams ÷ 453.592

Kilograms: Grams ÷ 1000

KH Cambodia Pound (lb), Kilogram

(kg)

Pounds: Grams ÷ 453.592

Kilograms: Grams ÷ 1000

TZ Tanzania Pound (lb), Kilogram

(kg)

Pounds: Grams ÷ 453.592

Kilograms: Grams ÷ 1000

PH Philippines Pound (lb), Kilogram

(kg)

Pounds: Grams ÷ 453.592

Kilograms: Grams ÷ 1000

LK Sri Lanka Pound (lb), Kilogram

(kg)

Pounds: Grams ÷ 453.592

Kilograms: Grams ÷ 1000

Notes on Units of Mass

o If the country code is not listed in the table, default to Grams and Kilograms.

o Always use the provided conversion formulas for accuracy.

o get_day_part() -> str

return what part of the day the catch was made. Use “Night”, “Morning”,

“Afternoon” and “Evening” (0:00-5:59, 6:00-11:59, 12:00-17:59, 18:00-23:59)

o get_season() -> str

return what season the catch is done. Use “Spring”, “Summer”, “Autumn” and

“Winter”. You can use the meteorological seasons of the northern hemisphere in

your computations.

8

o get_weight_category() -> str

This method returns the weight category of the fish. The categories are defined

as:

o “light”: The fish weighs more than 2% less than the expected weight.

o “average”: The fish’s weight is within ±2% of the expected weight.

o “heavy”: The fish weighs more than 2% above the expected weight.

Formula for Expected Weight To determine the expected weight of the fish, use

the following formula:

𝑤𝑒𝑖𝑔ℎ𝑡 = 𝑎 ∗ 𝑙𝑒𝑛𝑔𝑡ℎ𝑏
Length in cm

a = 0.0123

b = 3.1

Catch

- id: int
- fish: int
- contestant: str
- caught_at: datetime
- latitude: float
- longitude: float
- country_code: str
- weight: float
- length: float

+ get_contestant() -> Contestant
+ get_fish() -> Fish
+ get_weight_in_local_units() -> str
+ get_day_part() -> str
+ get_season() -> str
+ get_weight_category() -> str

Of course you can add any extra methods needed in your class, but the ones mentioned

above are mandatory.

9

Class Contestant:

• Attributes:

id (str), first_name (str), last_name (str), classification (str), date_of_birth (datetime)

• Mandatory Methods:

o get_age(at_date: date = date.today())

returns a integer of the contestant on the specified date. When no date is

provided use the date of today

o get_catches()

returns a tuple of all catches from the contestant

Contestant

- id: str
- first_name: str
- last_name: str
- classification: str,
- date_of_birth: datetime

+ get_age (self, at_date: date = date.today()) -> int
+ get_catches() -> tuple[Catch, …]

Of course you can add any extra methods needed in your class, but the one mentioned above

is mandatory.

10

Class Fish:

• Attributes:

taxon_key (str), species (str), scientific_name (str), kingdom (str)

• Mandatory Methods:

o get_catches()

returns a tuple of all catches that contains this kind of fish.

Fish

- taxon_key: int
- species: str
- scientific_name: str
- kingdom: str

+ get_catches() -> tuple[Catch, …]

Of course you can add any extra methods needed in your class, but the one mentioned above

is mandatory.

11

JSON example
Below is an example of the JSON (catches.json) that is supplied. Based on this JSON, you will

synchronize the data with the database when you start your application. This data is partly

fictive generated data.

[

 {

 "id": 1,

 "datetime": "2023-03-04 23:59:18",

 "coordinate": "-6.416667, 20.783333",

 "weight": 0.3,

 "length": 2.74,

 "fish": {

 "taxon_key": "5202660",

 "species": "Clarias dumerilii",

 "kingdom": "Animalia",

 "scientific_name": "Clarias dumerilii Steindachner, 1866",

 "occurrence_status": "PRESENT",

 "family": "Clariidae"

 },

 "country_code": "CD",

 "locality": "Tshikapa",

 "candidate": {

 "id": "71237630-0755-4857-b394-35285bfb3619",

 "first_name": "Stef",

 "last_name": "de Werd",

 "classification": "Pro",

 "date_of_birth": "1974-07-19",

 "length": 1.89

 }

 },

 { ...}

 ...

]

The coordinates in the JSON are structured as “lat, long”. Weight is in grams, length of catch in is in cm,
length of candidate is in m.

12

Functionality
A template file is provided with a Reporter class with the following questions. In case of a

collection return your answer sorted by the primary identifier.

The template will also have the methods and potential example output specified.

Questions asked in the class Reporter:

1. How many different fishes are there in the database? -> int
Return: integer of amount

2. What is the catch with the highest weight (assume only one catch is the longest)? -> Catch

Return: object of type Catch

3. What is the longest and shortest catch? -> tuple[Catch, Catch]
Return: tuple(longest, shortest), both objects of type Catch

4. What is the heaviest and lightest Catch? -> tuple[Catch, Catch]
Return: tuple(heaviest, lightest), both objects of type Catch

5. Which contestants have the most catches? -> tuple[Contestant, ...]
Return: tuple of all contestants with the most catches (objects of type Contestant)

6. Which fishes have the most catches? (order by id) -> tuple[Fish, ...]
Return: tuple of all fishes with the most catches (objects of type Fish)

7. Which contestant had the first catch? -> tuple[Contestant, …]
Return: tuple of all contestant with the first catch (objects of type Contestant)

8. Which contestant had the first catch of a specific fish type? -> tuple[Contestant, …]
Return: tuple of all contestant with the first catch by fish of type X (objects of type Contestant)

9. Which contestant had the last catch? -> tuple[Contestant, …]

Return: tuple of all contestant with the last catch (objects of type Contestant)

10. Which contestant had the last catch of a specific fish type? -> tuple[Contestant, …]
Return: tuple of all contestant with the last catch by fish of type X (objects of type Contestant)

11. Which contestant has fished between period X and Y? -> tuple[Contestant, ...]

The function determines which contestants have fished between a given period of X an Y.

The behavior of the function depends on the value of the parameter to_csv:
If to_csv = False:

The function returns a tuple containing all matching contestants. Each element in the tuple is a

unique object of type Contestant.

If to_csv = True:

The function does not return anything (None). Instead, it generates a CSV file named:

Contestant fishing between X and Y.csv

The CSV file contains the following fields for each contestant:

• "id"

• "first_name"

• "last_name"

• "date_of_birth"

• "classification"

13

12. Which fishes are fished in country X? ->tuple[Fish, ...]

This function determines which fishes are caught in Country X

The behavior of the function depends on the value of the parameter to_csv:

If to_csv = False:

The function returns a tuple containing all matching Fishes. Each element in the tuple is a unique

object of type Fish.

If to_csv = True:

The function does not return anything (None). Instead, it generates a CSV file named:

Fishes in country X.csv

The CSV file contains the following fields for each fish:

• "taxon_key"

• "species"

• "kingdom"

• "scientific_name"

13. Which contestants fished in country X? -> tuple[Contestant, ...]
This function determines which contestants have been fishing in country X

If to_csv = False:

The function returns a tuple containing all matching Contestants. Each element in the tuple is a

unique object of type Contestant.

If to_csv = True:

The function does not return anything (None). Instead, it generates a CSV file named:

Contestants fished in country X.csv

The CSV file contains the following fields for each contestant:

• "id"

• "first_name"

• "last_name"

• "date_of_birth"

• "classification"

14

Testing
The test cases on CodeGrade use a different dataset than the JSON file that is provided to you.

Thus, when you write unit tests, make sure not to use any data you find in the JSON file, as

those will fail when you upload your code to CodeGrade.

Make sure the following methods are covered with tests:

In test_catch.py test the methods from catch.py

1. get_weight_in_local_units():

Test the conversion to multiple different local mass units

2. get_day_part():

Test to check if the right day parts will be returned

3. get_season():

Test to check if the right seasons will be returned

4. get_weight_category():

Test to check if the fish is in the right category

In test_contestant.py test the methods of contestant.py

1. get_age():

Test if the age of the contestant is right calculated

Technical requirements

• Code standard PEP8

• Imports of useful libraries is allowed

• Python version 3.11 or higher

• Unit tests with Pytest

Filenames to submit in CodeGrade:
• catch.py

• contestant.py

• fish.py

• fishingapp.py

• fishingreporter.py

• test_catch.py

• test_contestant.py

15

Plagiarism
The code has to be your code!

All submissions will be tested for plagiarism (so don’t copy code from your fellow students) and

abuse will result in a plagiarism report to the Exam committee. Your work will no longer be

checked and will no longer count for the assessment.

Submissions in CodeGrade
The number of hand-ins is limited to 1 time per 5 minutes,

so test your code locally first before you upload it to CodeGrade!

Deadlines
Start at Monday morning and have until Friday 17-01-2025 23:59 to hand in their work. Hand-in

after Friday 17-01-2024 23:59 is blocked and not possible.

Deliverables (summary)
The minimal deliverables you are required to hand in are the predefined files: catch.py,

contestant.py, fish.py, fishingapp.py, fishingreporter.py, test_catch.py, test_contestant.py.

These will be tested against predefined tests in CodeGrade. As a student you are free to hand in

more work if you extended this assignment to show your knowledge. These extras can also be

handed in via CodeGrade.

Good luck!

	Fishing: A step into the world of fishing!
	Introduction
	Database
	Schema database
	Classes
	JSON example
	Functionality
	Testing
	Technical requirements

	Filenames to submit in CodeGrade:
	Plagiarism
	Submissions in CodeGrade
	Deadlines
	Deliverables (summary)

